
R O

H
+

TMS

OTBS

OR O

TMS

OR O

i, ii

(55-80%)

iii

(74-80%)

31 2 4

TETRAHEDRON
LETTERS

Tetrahedron Letters 41 (2000) 10219–10222Pergamon

Concise and stereocontrolled synthesis of the southern
g-butyrolactone subunit of polycavernoside A
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Abstract

The southern g-butyrolactone subunit 8 of polycavernoside A was readily assembled by a novel and
connective methodology involving an initial ene-reaction followed by an intramolecular oxidative cyclisa-
tion. © 2000 Published by Elsevier Science Ltd.
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In the preceding communication, we have disclosed some of our results on the establishment
of an efficient and connective novel methodology for the rapid and stereocontrolled assembly of
silyl-substituted g-butyrolactones 3, based upon a tandem ene-reaction/oxidative cyclisation of
aldehydes 1 with allylsilane 2.1 Subsequent functionalisation of 3 afforded a simple preparation
of variously substituted exo-methylene-g-butyrolactones 4 (Fig. 1).

Figure 1. i=Et2AlCl; ii=TBAF/THF then TPAP/NMO; iii=LDA/TMSCl then NBS then TBAF

In this article, we wish to report an expedient synthesis of the southern g-butyrolactone
subunit of polycavernoside A 5,2 a marine toxin isolated by Yasumoto et al. in 1992 and
responsible for fatal human intoxication on the island of Guam,3 using as a key-step our novel
ene/oxidative cyclisation methodology. Our retrosynthetic analysis is described in Fig. 2.
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Figure 2.

Cleavage of the macrocyclic lactone and a-ketol functions of 5 generated two fragments 6 and
7 of approximately the same molecular size. Removal of the polyene portion of subunit 7
afforded butyrolactone 8, which was further disconnected, by application of the ene-oxidative
cyclisation retron, to the allylsilane 2 and the key aldehyde 9. Our synthesis of 8 is illustrated in
Fig. 3.

Figure 3.
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Oxidation of the monoprotected alcohol 10, using a modification of our recently reported
copper-catalysed aerobic oxidation protocol,4 delivered the desired aldehyde 11 in 97% isolated
yield. Subsequent ene reaction between aldehyde 11 and allylsilane 2, catalysed by Et2AlCl,
generated the required enolsilane 12, which was submitted to a chemoselective oxidative–desilyl-
ation procedure, affording in excellent yield the desired a-(trimethylsilylmethyl)-lactone 13 (d.e.:
75%). Transformation of 13 into the corresponding a-methylenelactone 14, via the one-pot
protocol described in Fig. 3, proceeded smoothly and afforded product 14 in 74% yield. Finally,
catalytic hydrogenation using Pd/C in EtOAc,5 reduced the exo-methylene C�C double bond
and simultaneously removed the benzyl protecting group, directly producing the syn-disubstit-
uted lactone 8 in quantitative yield and as a single diastereoisomer, possessing the correct
stereochemistry and functionality for further transformation into the southern portion of
polycavernoside A.6

The extremely high selectivity observed during the catalytic hydrogenation of the exo-methyl-
ene double bond of 14 appeared rather surprising in light of previous results obtained in the
reduction of 5-substituted exo-methylene g-butyrolactones.7 Closer examination of the products
formed during the early stages of the hydrogenation revealed that a rapid, metal-catalysed,
isomerisation of the exocyclic double bond of 14 into the endocyclic position took place,
generating butenolides 15 and 16. A subsequent, and more sluggish, reduction of this trisubstit-
uted alkene eventually afforded the final product 8. It thus transpires that the high facial
selectivity observed in the formation of 8 results from a 1,2-diastereocontrol, the bulky side
chain at C5 directing the approach of the reductant from the a-face of butenolides 15 and 16
(Fig. 4).

Figure 4.

In summary, we have reported a concise and efficient synthesis (five steps, 35% overall yields)
of the southern lactone subunit 8 of polycavernoside A, using as a key-step our recently
disclosed ene/oxidative cyclisation methodology. Current efforts are now being directed towards
delineating the full scope of this connective methodology, defining an enantioselective version
and completing the total synthesis of polycavernoside A 5. The results of these investigations
will be reported in due course.
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